Extensions 1→N→G→Q→1 with N=C22 and Q=C22×C26

Direct product G=N×Q with N=C22 and Q=C22×C26
dρLabelID
C24×C26416C2^4xC26416,235

Semidirect products G=N:Q with N=C22 and Q=C22×C26
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×C26) = D4×C2×C26φ: C22×C26/C2×C26C2 ⊆ Aut C22208C2^2:(C2^2xC26)416,228

Non-split extensions G=N.Q with N=C22 and Q=C22×C26
extensionφ:Q→Aut NdρLabelID
C22.1(C22×C26) = C4○D4×C26φ: C22×C26/C2×C26C2 ⊆ Aut C22208C2^2.1(C2^2xC26)416,230
C22.2(C22×C26) = C13×2+ 1+4φ: C22×C26/C2×C26C2 ⊆ Aut C221044C2^2.2(C2^2xC26)416,231
C22.3(C22×C26) = C13×2- 1+4φ: C22×C26/C2×C26C2 ⊆ Aut C222084C2^2.3(C2^2xC26)416,232
C22.4(C22×C26) = C22⋊C4×C26central extension (φ=1)208C2^2.4(C2^2xC26)416,176
C22.5(C22×C26) = C4⋊C4×C26central extension (φ=1)416C2^2.5(C2^2xC26)416,177
C22.6(C22×C26) = C13×C42⋊C2central extension (φ=1)208C2^2.6(C2^2xC26)416,178
C22.7(C22×C26) = D4×C52central extension (φ=1)208C2^2.7(C2^2xC26)416,179
C22.8(C22×C26) = Q8×C52central extension (φ=1)416C2^2.8(C2^2xC26)416,180
C22.9(C22×C26) = Q8×C2×C26central extension (φ=1)416C2^2.9(C2^2xC26)416,229
C22.10(C22×C26) = C13×C22≀C2central stem extension (φ=1)104C2^2.10(C2^2xC26)416,181
C22.11(C22×C26) = C13×C4⋊D4central stem extension (φ=1)208C2^2.11(C2^2xC26)416,182
C22.12(C22×C26) = C13×C22⋊Q8central stem extension (φ=1)208C2^2.12(C2^2xC26)416,183
C22.13(C22×C26) = C13×C22.D4central stem extension (φ=1)208C2^2.13(C2^2xC26)416,184
C22.14(C22×C26) = C13×C4.4D4central stem extension (φ=1)208C2^2.14(C2^2xC26)416,185
C22.15(C22×C26) = C13×C42.C2central stem extension (φ=1)416C2^2.15(C2^2xC26)416,186
C22.16(C22×C26) = C13×C422C2central stem extension (φ=1)208C2^2.16(C2^2xC26)416,187
C22.17(C22×C26) = C13×C41D4central stem extension (φ=1)208C2^2.17(C2^2xC26)416,188
C22.18(C22×C26) = C13×C4⋊Q8central stem extension (φ=1)416C2^2.18(C2^2xC26)416,189

׿
×
𝔽